Abstract. Facilitation cascades, which enhance the diversity of ecological communities in many ecosystems, have been viewed as the net outcome of positive species' interactions. The strength and direction of these interactions, and thus the realized biodiversity, however, are likely to vary with the density and traits of the habitat-formers and via negative interactions among interacting species. To test this, we manipulated the density and status (alive vs. dead) of a secondary habitat-former, the razor clam Pinna sp., and measured responses by the primary habitat-former, the seagrass Zostera muelleri, associated epifauna and infauna, and fish foraging behavior. At the plot level, for both live and dead clams, the total abundance of epifauna increased with clam density. However, for individual clams, the density of epifauna/cm 2 decreased with increasing clam density. Video image analysis showed higher fish predation of epifauna on dead compared to live clams at high but not low densities and path analysis indicated that these strong negative trophic interactions increased with dead clam density via both direct and indirect pathways. By contrast, an increasing density of live but not dead clams was negatively correlated with seagrass faunal densities. However, seagrass growth and standing biomass were unaffected by clam density or status. Our study illustrates that the realized facilitation cascade is a function of nested negative and positive interactions which change as a function of the density of clams and whether they were dead or alive, and therefore do not represent a collection of hierarchical positive interactions.