IntroductionAppearance of products is one of the factors of customer attraction. This necessitates customer-centric design of products and product customization [1][2][3]. One of the methods proposed in this area is the direct use of designs proposed by users for designing the products. However, offering a design requires specialized knowledge and necessary skills for working with design software and tools and customers lack such requirements. Besides, strong presence in competitive markets requires quick development of
AbstractOne of the effective factors in increasing sales is the consistency of products with the preference of the customers. Designing the products consistent with customer needs requires the engagement of customers in the product design process. One way to achieve this goal is the use of interactive evolutionary algorithms. During the running of such algorithms, the customer acts as a fitness function and imparts his/her opinion directly to the design process. Since these algorithms are usually iterated frequently, the user fatigue problem during interaction with them is a major challenge. The present study develops a method to tackle the user fatigue problem in the interactive genetic algorithm using the candidate elimination algorithm. In this method, customer preferences are gradually learned by applying the candidate elimination algorithm on the designs evaluated by the user in the early stages of algorithm. Using the learned preferences, designs which may not meet the customer preferences are discovered and automatically receive a predefined low score from the algorithm. The proposed method has been evaluated on the customer-centric design of book covers and its results have been compared with those of the two simple interactive genetic algorithm and multi-stage interactive genetic algorithm. The results are indicative of a considerable reduction of the number of algorithm generations, the number of chromosomes being evaluated by user, and the evaluating time in comparison with the two aforementioned methods. Reduction of these criteria leads to decrease of user fatigue. In addition, the proposed method has increased the user satisfaction.
Keywords:Interactive design, Customer-centric product design, Interactive genetic algorithm, User fatigue, Candidate elimination algorithm
Open Access© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Sheikhi Darani and Kaedi Hum. Cent. Comput. Inf. Sci. (2017) Page 2 of 18 Sheikhi Darani and Kaedi Hum. Cent. Comput. Inf. Sci. (2017) 7:38 customer-centric designs for products and services. These factors have paved the way for the emergence of interactive evolutionary algorithms in the design ...