We used lipid, fatty acid, and stable isotope analyses to investigate variation, over nine months, in the trophodynamics of 10 dominant cryptofaunal, macroalgal/algal, and environmental components from two sites within a rhodolith (Lithothamnion glaciale) bed in southeastern Newfoundland (Canada). There was an overall shift from a diatom-based food web following the spring phytoplankton bloom to a kelp/algae-based food web during fall, accompanied by preferred use of EPA (20:5ω3) over DHA (22:6ω3) in most cryptofauna. The food web contained three trophic levels that encompassed: (1) direct feeding relationships from primary producers (e.g., rhodoliths, macroalgae) to second-order consumers (e.g., sea stars, polychaetes); (2) trophic subsidy from within and outside the rhodolith bed via settlement, resuspension, and consumption of macroalgal fragments and other detrital organic matter; and (3) strong pelagic/benthic coupling. Riverine input did not affect cryptofaunal diets, as shown by the lack of terrestrial biomarkers at the study site nearest to the riverine input, and there were minor differences in trophodynamics between both study sites. The present study’s findings, applicable to relatively broad spatial and temporal domains, as well as those of complementary studies of the same rhodolith bed, uncover high spatio-temporal stability of the rhodolith bed framework and of resident cryptofaunal abundance, diversity, and trophodynamics.