Interactive spatiotemporal LSTM approach for enhanced industrial fault diagnosis
Tan Zhang,
Zhanying Huang,
Ming Lu
et al.
Abstract:Purpose
Rotating machinery is a crucial component of large equipment, and detecting faults in it accurately is critical for reliable operation. Although fault diagnosis methods based on deep learning have been significantly developed, the existing methods model spatial and temporal features separately and then weigh them, resulting in the decoupling of spatiotemporal features.
Design/methodology/approach
The authors propose a spatiotemporal long short-term memory (ST-LSTM) method for fault diagnosis of rotat… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.