Microbial associations that result in phytoplankton mortality are important for carbon transport in the ocean. This includes parasitism, which in microbial food webs, is dominated by the marine alveolate group, Syndiniales. Parasites are expected to contribute to carbon recycling via host lysis; however, knowledge on host dynamics and correlation to carbon export remain unclear and limit the inclusion of parasitism in biogeochemical models. We analyzed a 4-year 18S rRNA metabarcoding dataset (2016-2019), performing network analysis for twelve discrete depths (1-1000 m) to determine Syndiniales-host associations in the seasonally oligotrophic Sargasso Sea. Analogous water column and sediment trap data were included to define environmental drivers of Syndiniales and their correlation with particulate carbon flux (150 m). Syndiniales accounted for 48-74% of network edges, most often associated with Dinophyceae and Arthropoda (mainly copepods) at the surface and Rhizaria (Polycystinea, Acantharea, and RAD-B) in the aphotic zone. Unlike other major groups, Syndiniales were significantly (and negatively) correlated with particulate carbon flux, suggesting parasites may drive flux attenuation through remineralization. Examination of Syndiniales amplicons revealed a range of depth patterns, including specific ecological niches and vertical connection among a subset (19%) of the community, the latter implying sinking of parasites (infected hosts or spores) on particles. Our findings point to the use of Syndiniales as biomarkers of carbon export, highlighting their importance for marine food webs and biogeochemistry.