We reconstructed the Chandler Wobble (CW) from 1962 to 2022 by combining the Eigen-oscillator excited by geophysical fluids of atmospheric and oceanic angular momentums (AAM and OAM). The mass and motion terms for the AAM are further divided with respect to the land and ocean domains. Particular attention is placed on the time span from 2012 to 2022 in relation to the observable reduction in the amplitude of the CW. Our research indicates that the main contributor to the CW induced by AAM is the mass term (i.e., the pressure variations over land). Moreover, the phase of the AAM-induced CW remains relatively stable during the interval of 1962–2022. In contrast, the phase of the OAM-induced CW exhibits a periodic variation with a cycle of approximately 20 years. This cyclic variation would modulate the overall amplitude of the CW. The noticeable amplitude deduction over the past ten years can be attributed to the evolution of the CW driven by AAM and OAM, toward a state of cancellation. These findings further reveal that the variation in the phase difference between the CW forced by AAM and OAM, may be indicative of changes in the interaction between the solid Earth, atmosphere, and ocean.