Layered double hydroxides (LDH) are an extended class of two-dimensional anionic materials that are known for their unique lamellar structure, versatile composition, and tunable properties. The layered architecture allows the intercalation between the positively charged sheets of a vast variety of anionic species, including oxometalates and polyoxometalates (POM). The hybrid composites that were developed using POM and LDH show great advantages when compared to both parent materials causing the appearance of new functionalities, which may lead to remarkable contributions in many areas of application, especially in catalysis. The current review paper emphases all of the crucial works already existing in literature that are related to the large group of POM-LDH solids and their use as catalysts for fine organic synthesis. The new trends in the development of the POM-LDH catalysts are highlighted based on the overview of 121 scientific articles that were published between 1984 and 2019. The main topics are focused primarily on the synthesis, characterization, and the catalytic applications of different LDH systems hosting polyoxometalates with low, medium, and high nuclearity. The intense exploration of the POM-LDH field has led to the obtaining of countless effective catalysts used in various types of reactions, from condensation, esterification, halodecarboxylation, to oxidation and epoxidation.