Abstract-Ionizing radiation promotes formation of reactive oxygen species, including the superoxide anion (O 2 Ϫ ). To evaluate whether O 2 Ϫ or O 2 Ϫ -mediated perturbations may contribute to the known atherogenic effects of radiation, we examined aortic lesion formation in irradiated C57BL/6 mice and evaluated the effects of CuZn-superoxide dismutase (CuZn-SOD) overexpression. Ten-week-old mice were exposed to a 2-, 4-, or 8-Gy dose of 250-keV x-rays to the upper thorax and then placed on a high-fat diet for 18 weeks. Based on quantitative lipid staining of serial sections of the proximal aorta, mean lesion area was increased with increasing radiation dose and was 3-fold greater in 8-Gy-irradiated than sham-irradiated mice (7800Ϯ2140 versus 2635Ϯ709 m 2 , PϽ0.05). These effects were absolutely dependent on a high-fat diet, which had to be introduced within 1 to 2 weeks of the radiation exposure, suggesting the early involvement of atherogenic lipoproteins that were elevated in response to the diet. The importance of radiation-induced oxidative stress was supported by the observation of a 2-fold lower mean lesion area in irradiated CuZn-SOD transgenic mice than in their irradiated, nontransgenic littermates (3026Ϯ1590 versus 6102Ϯ1834 m 2 , PϽ0.05). Lucigeninenhanced chemiluminescence, used as an index of aortic O 2 Ϫ concentrations, was significantly elevated in the postradiation period, and this response was reduced in CuZn-SOD transgenics. On the basis of these results, we propose that radiation may be a useful tool for initiating oxidative or redox-regulated events that promote atherogenesis and for testing the antiatherogenic properties of antioxidants.