From evolutionary miniaturization activation of ancestral larger genes stocks, an electromagnetic field derivate from cancer microscopic collision events participates in the elaboration of geometric complexes and chiral biomolecules that serve to build bodies with embryoid print as it develops during gestation. This miniaturization platform literally allows us to see what would otherwise remain completely invisible. In concordance with our observations collision extreme chaos generates in space time interval geometric scalable invariant extreme order. To determine whether our predictions are valid, we select Mars one of the planets with highest rate collision impact craters. The idea that impact events produce major geological effects that go far beyond the production of craters has recently been emphasized. We wonder if we could predict geometric chiral triangular hexagonal complexes in Martian landscape similar to those documented at microscopic, macroscopic, megascopic levels. We resolved to investigate the geomorphology patterns of more than 4000 collision impact craters in Mars landscape using images from Google Mars platforms, and HIRISE (High resolution imaging science experiment camera from the University of Arizona) based on a pattern recognition images algorithm we identified Mars mosaic order area (MOA). MOA is a circular cluster of overlap craters organized in apparent visible cycle sequential order oriented counterclockwise and consisting of nine craters that structure visible and measurable geometry in interface with biosignature morphologies in their interior not having been previously documented. Crater, therefore, is a step forward in understanding how collisions influence life, both on Earth and on other planets. We were pleased that the correct pattern image algorithm J. A. Diaz, K. E. Paris 302 predicted the identification of irreducible geometry matrix of GTCHC complexes in Martian impact craters. Cancer can inform astrobiology.