2018
DOI: 10.1007/s00382-018-4303-3
|View full text |Cite
|
Sign up to set email alerts
|

Intercomparison of precipitation datasets for summer precipitation characteristics over East Asia

Abstract: Precipitation data in the Global Precipitation Climatology Project (GPCP) and in four reanalysis datasets, ERA-Interim, MERRA, NCEP/NCAR, and JRA, are compared against the CPC Merged Precipitation (CMAP) in the cyclostationary empirical orthogonal function (CSEOF) space to evaluate these datasets in representing the summer precipitation characteristics over East Asia. CSEOF analysis is applied to each dataset, and regression analysis is performed in the CSEOF space with the CMAP data as the target. The regress… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
5
0
3

Year Published

2020
2020
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 12 publications
(9 citation statements)
references
References 23 publications
1
5
0
3
Order By: Relevance
“…Snowfall in combination with T2 determines the main source of external mass income to the glacier and also exhibits a strong influence on albedo and thus the energy balance (Equation (1)). RRR prediction is known to be highly error-prone, especially in complex terrain (e.g., [3,89,90]). UG1 has been shown in various studies to be especially sensitive to T2 and to RRR [11,13,16,20].…”
Section: Surface Mass Balance Modeling and Associated Uncertaintiesmentioning
confidence: 99%
“…Snowfall in combination with T2 determines the main source of external mass income to the glacier and also exhibits a strong influence on albedo and thus the energy balance (Equation (1)). RRR prediction is known to be highly error-prone, especially in complex terrain (e.g., [3,89,90]). UG1 has been shown in various studies to be especially sensitive to T2 and to RRR [11,13,16,20].…”
Section: Surface Mass Balance Modeling and Associated Uncertaintiesmentioning
confidence: 99%
“…El Reanalysis no podría ser utilizado para la caracterización climática de ciudades costeras de Argentina sin ser corregido adecuadamente, debido a que los errores producto de las diferencias de escala espacial, los generados por la topografía y la cercanía al mar, generan que la serie sea estadísticamente distinta a los datos observados (Kistler et al, 2001;Rusticucci y Kousky, 2002;Kim, Kim, Boo, Shim y Kim, 2019; Gomes de Lima y Rodrigues Alcântara, 2019). Es importante considerar que los métodos estadísticos aplicados para realizar un downscaling de variables meteorológicas permiten modelar las relaciones estacionarias entre una serie de datos observados a escala local con los provenientes del Reanalysis (Xue, Janjic, Dudhia, Nasicy y De Sales, 2014;Miró Pérez, Estrela Navarro y Olcina Cantos, 2015;Libanda et al, 2020).…”
Section: Discusión De Los Resultadosunclassified
“…Esto se debe principalmente a que en algunas circunstancias, los datos del Reanalysis tienen diferencias espacio-temporales marcadas que impiden su modelización. Estas hacen referencia a los eventos extremos termo-pluviométricos y a las sobreestimaciones o subestimaciones de los valores en algunas estaciones del año (Haylock, Cawley, Harpham, Wilby y Goodess, 2006;Kim et al, 2019;Gomes de Lima y Rodrigues Alcântara, 2019). Por este motivo, la estación pluviométricamente seca de Concordia tampoco pudo ser determinada en el modelo identificado.…”
Section: Discusión De Los Resultadosunclassified
See 1 more Smart Citation
“…1). Noting the significant discrepancies that arise in the JJA climatological precipitation pattern among the different reanalysis (and also among observational products: Kim et al 2019;Wang et al 2017) we consider that the model reproduces the ASM regimes in an adequate manner.…”
Section: Modelmentioning
confidence: 95%