This paper shows that an intermittent AC coupling defect occurring in a DDR4 data channel will cause more intermittent errors in DDR4, compared to such defect in DDR3. The intermittent AC coupling defect occurs due to intermittent fracture in DDR4 package solder ball. The defect causes DC offset in DDR4, which shifts the data signal or data eye and results in DDR4 data channel failure. The DC offset occurs due to the asymmetric nature of pseudo open drain termination scheme. DDR4 data channel response is compared with DDR3 channel. It is shown that pseudo random binary sequence (PRBS) pattern will always cause failure for DDR4, but PRBS will only cause failure in DDR3 if the sequence of consecutive 0's or 1's in PRBS pattern is long enough to cause threshold violation. As a result there will be more intermittent errors in DDR4 compared to DDR3. The defect due to fracture in solder ball is modelled by an AC coupling capacitor. A 1nF AC coupling capacitor corresponding to a solder ball fracture of height about 1nm is used to show the difference between DDR4 and DDR3 response.