Molecular cages have attracted great attention because of their fascinating topological structures and well‐defined functional cavities. These discrete cages were usually fabricated by coordination assembly approach, a process employing directional metal‐ligand coordination bonds due to the nature of the divinable coordination geometry and the required lability to encode dynamic equilibrium/error‐correction. Compared to these coordination molecular cages with mononulcear metal‐nodes, an increasing number of molecular cages featuring dinuclear and then polynuclear metal‐cluster nodes have been synthesized. These metal‐cluster‐based coordination cages (MCCCs) combine the merits of both metal clusters and the cage structure, and exhibit excellent performances in catalysis, separation, host‐guest chemistry and so on. In this review, we highlight the syntheses of MCCCs and their potential functions that is donated by the metal‐cluster nodes.