A critical review of interdiffusion processes in the binary β-NiAl and γ'-Ni3Al intermetallic compounds is presented. The molar volume changes associated with interdiffusion and partial molar volumes of the reacting species, required for the determination of the diffusion parameters, are found using lattice parameter data and, in the case of NiAl, the available information about vacancy concentration within homogeneity range of the β-phase. The presented treatment is purely phenomenological, and its use is convenient since no exlicit assumption of the underlying mechanisms required. A critical analysis of diffusion data for β-NiAl and γ'-Ni3Al ordered phases is followed by discussion of error sources encountered in the interdiffusion experiments. From Kirkendall marker experiments with incremental diffusion couples, information about relative mobilities of species in the intermetallic phases can be obtained, and tracer diffusion coefficients can be deduced using pertinent thermodynamic data on the nickel aluminides. Contribution of the vacancy wind effect to the calculated tracer diffusivities can also be estimated. The Kirkendall plane bifurcation in the Ni41.7Al58.3/Ni72.24Al27.76 reaction couple, in which a single-phased layer of β-NiAl intermatallic is formed during interdiffusion from its adjacent phases, is directly related to the growth of grains of the reaction product at a location in between interfaces with starting materials. This diffusion phenomenon can be rationallised using a corresponding Kirkendall velocity diagram. Changes in magnitude and sign of the difference in intrinsic mobilities of the components inside the homogeneity range of the β-NiAl lead to a velocity curve that makes bifurcation of the Kirkendall marker plane possible.