The joining of dissimilar steels, called clad steel, has attracted great attention recently due to its good material performances and productivity. The present work utilized an electroslag-remelting (ESR) process to join dissimilar carbon and stainless steels with enhanced bonding properties. The microstructural characteristics and bonding properties of the developed ESR-clad steel were investigated in comparison to those of other clad steels manufactured by conventional methods, including hot roll-bonding and weld overlaying. The microstructure of the developed alloy gradually changed within the bonding layer; this change is discussed in light of the phase transformation and fracture behavior. The ESR-clad steel had much higher bonding strength compared to the other steel joints in shear testing. Such an improvement in the bonding properties was attributed to the defect-free interface and low residual stress in the graded bonding layer of the ESR-clad steel.