IntroductionThis chapter presents the energy dissipation approach for analyzing surface contact damages in various materials, including composite materials. As known, surface contact is a very common phenomenon, which can be found in daily life and many scientific and engineering problems. The contact of different bodies can be modeled as indentation. Analysis of indentation and modeling of the deformation states of indented materials are often difficult because of the complexity of stress distributions within indentation zones. It is a l s o v e r y d i f f i c u l t t o e v a l u a t e s t r e s s s t a t e s i n r e g i o n s u n d e r n e a t h a n i n d e n t e d z o n e . Instrumental indentation has been performed on various materials including composite materials. Experimental studies on indention of coatings and brittle materials have been reported extensively, but the criterion for evaluating the extent of damage is not unified. Ductile materials deform relatively stable in indentation processes. While brittle materials are sensitive to compressive contact loadings in view of the formation of surface cracks. Therefore, it is difficult to find a unified stress or strain based damage criterion to characterize the damage evolution. Energy dissipation analysis may be more accurate to describe the deformation behavior of such materials. Specifically, under wedge indentation, the analysis should be investigated because the stress field has the singularity which limits the applicability of the strength criterion. In this chapter, the load-displacement relations with elastic-plastic responses of the materials associated with the indentation processes will be obtained to calculate the hysteresis energy. Lattice rotation measurement using electron backscatter diffraction (EBSD) technique will be performed in the region ahead of the indenter tip to measure the dimension of the contact damage zone (CDZ) and the results will be used to define the length scales in contact deformation. A unified criterion using the hysteresis energy normalized by the length scales will be established.Damage evolution in composite materials is very sensitive to the interaction of reinforcements and matrices in interface regions. For example, the development of damage in glass particle and fiber reinforced epoxy composite materials is strongly influenced by the interface debonding conditions [1]. However, the exact effect of bonding conditions on the performance of particle filled composite materials is still not fully understood. Kawaguchi and Pearson [2] reported that strong matrix-particle adhesion may lower the fatigue crack propagation resistance. While the studies on Si 3 N 4 nanoparticle filled epoxy composites www.intechopen.com
Continuum Mechanics -Progress in Fundamentals and Engineering Applications