Ambipolar field-effect transistors allowing both holes and electrons transport can work in different states, which are attractive for simplifying the device manufactures and miniaturizing the integrated circuits. However, conventional ambipolar transistors intrinsically suffer from poor switching-off capability because the gate electrode is not able to simultaneously deplete holes and electrons across the entire transport channel. Here, we show that the switching-off capability of polymer ambipolar transistor is largely improved by up to 3 orders, through introducing non-uniformly distributed compensation potentials along the channel to synchronically tune the charge transport at different channel locations. Non-uniformly gate-stressed conjugated-polymer@insulator blend film induces non-uniformly trapped charges in the insulators, which consequently generates non-uniform compensation electrical field imposed in the conjugated-polymers. Both n-type and p-type operations with high mobility (2.2 and 0.8 cm2s-1V-1 respectively) and high on/off ratio (105) are obtained in the same device, and the device states are reversibly switchable, which provides a new strategy for three-level non-volatile memories and artificial synapses.