A present chapter is focused on remarkable dielectric, electro-optical and micro-structural peculiarities of LC-CNTs dispersions, their correlation and mutual influence. It is mainly based on authors' original results obtained within recent years. The structure of this chapter is the following. The introductory part (section 1) gives short introduction to LC-CNTs composites and elucidates benefit of combination of LC and CNTs. It also outlines a field of questions further considered. A section 2 gives details of our samples and experimental methods. The next three sections correspondingly consider dielectric, electro-optical and structural peculiarities of LC-CNTs composites. Each of these topical sections starts with a short review and lasts with the authors' original results. The final, conclusion part (Section 6), summarizes most interesting properties of LC-CNTs suspensions, their application perspectives and mention some exciting problems for further investigations. www.intechopen.com Liquid crystal dispersions of carbon nanotubes: dielectric, electro-optical and structural peculiarities 453 power of 150 W. The concentration of CNTs, c, was varied in the range 0-2 wt %. Doping of CNTs has not influenced essentially the phase transition temperatures of LC-CNTs composites. 2.4 Cells The cells for electro-optical and dielectric measurements were made from glass substrates containing patterned ITO electrodes and aligning layers of polyimide. The polyimides AL2021 (JSR, Japan) and SE5300 (Nissan Chemicals, Japan) were used for homeotropic alignment of LC EBBA, MLC6608 and MLC6609, while the polyimide SE150 (Nissan Chemicals, Japan) was utilized for planar alignment of LC 5CB. The polyimide layers were rubbed by a fleecy cloth in order to provide a uniform planar alignment of LC in either fieldon state (EBBA, MLC6608 and MLC6609) or a zero field (5CB). The cells were assembled so that the rubbing directions of the opposite aligning layers were antiparallel. A cell gap was maintained by the glass spacers of appropriate size (16 m, if not otherwise stated). Finally, these cells were filled capillary with neat or CNTs doped liquid crystals heated to isotropic state. In some dielectric measurements the cells without alignment layers were utilized. The structure of LC-CNTs composites was monitored by observation of the filled cells placed between crossed polarizers, both by naked eye and in an optical polarizing microscope. 2.5 Electro-optical measurements The electro-optical measurements were carried out using the experimental setup described in (Koval'chuk et al., 2001a). The cell was set between two crossed polarizers so that the angle between the polarizer axes and the rubbing direction was 45°. The sinusoidal voltage 0-60 V (at frequency f=2 kHz) was applied to the cell. The voltage was stepwise increased from 0 to 60 V and then decreased back to 0; the total measuring time, i.e., time of voltage application, was about 1 min. The transmittance of the samples was calculated as =(I out /I in)*100%, where I in and ...