When a multicomponent system is suddenly loaded, its capability of bearing the load depends not only on the strength of components but also on how a load released by a failed component is distributed among the remaining intact ones. Specifically, we consider an array of pillars which are located on a flat substrate and subjected to an impulsive and compressive load. Immediately after the loading, the pillars whose strengths are below the load magnitude crash. Then, loads released by these crashed pillars are transferred to and assimilated by the intact ones according to a load-sharing rule which reflects the mechanical properties of the pillars and the substrate. A sequence of bursts involving crashes and load transfers either destroys all the pillars or drives the array to a stable configuration when a smaller number of pillars sustain the applied load. By employing a fibre bundle model framework, we numerically study how the array integrity depends on sudden loading amplitudes, randomly distributed pillar strength thresholds and varying ranges of load transfer. Based on the simulation, we estimate the survivability of arrays of pillars defined as the probability of sustaining the applied load despite numerous damaged pillars. It is found that the resulting survival functions are accurately fitted by the family of complementary cumulative skew-normal distributions.