In this paper, we consider the instability of the interface between two superposed streaming conducting and dielectric fluids of finite depths through porous medium in a vertical electric field varying periodically with time. A damped Mathieu equation with complex coefficients is obtained. The method of multiple scales is used to obtain an approximate solution of this equation, and then to analyze the stability criteria of the system. We distinguish between the non-resonance case, and the resonance case, respectively. It is found, in the first case, that both the porosity of porous medium, and the kinematic viscosities have stabilizing effects, and the medium permeability has a destabilizing effect on the system. While in the second case, it is found that each of the frequency of the electric field, and the fluid velocities, as well as the medium permeability, has a stabilizing effect, and decreases the value of the resonance point, while each of the porosity of the porous medium, and the kinematic viscosities has a destabilizing effect, and increases the value of the resonance point. In the absence of both streaming velocities and porous medium, we obtain the canonical form of the Mathieu equation. It is found that the fluid depth and the surface tension have a destabilizing effect on the system. This instability sets in for any value of the fluid depth, and by increasing the depth, the instability holds for higher values of the electric potential; while the surface tension has no effect on the instability region for small wavenumber values. Finally, the case of a steady electric field in the presence of a porous medium is also investigated, and the stability conditions show that each of the fluid depths and the porosity of the porous medium ε has a destabilizing effect, while the fluid velocities have stabilizing effect. The stability conditions for two limiting cases of interest, the case of purely fluids), and the case of absence of streaming, are also obtained and discussed in detail.