This study examines the Inconel 718/Ti6Al4V multi-material with a Cu and Nb interlayer produced by SLM. To achieve this, it is necessary to investigate the microstructure, the chemical and phase composition, and the hardness of the interfacial zone in the multi-material samples. Furthermore, it is necessary to determine the impact of interlayer utilization on the mechanical properties of multi-material samples. The investigation showed that the formation of island macro-segregation was observed in all interfacial zones of the multi-material samples. The interfacial zones, Ti6Al4V/Nb and Cu/Inconel 718, exhibited a relatively sharp transition in the chemical composition. In contrast, the Cu/Nb interfacial zone exhibited a gradual transition. The results of the chemical composition study indicated that the width of the Nb/Cu transition zone was approximately 700 μm. No new phases were identified in the production of the multi-material samples. The typical phases were present in the alloy zone, as well as in the Nb/Cu interfacial zone. During the transition from the Ti6Al4V zone to the Inconel 718 zone through the Nb and Cu zones, the average microhardness values changed as follows: 270 → 190 → 120 → 300 HV. The ultimate tensile strength values for the multi-material samples reached 910 MPa.