Micelle templating has emerged as a powerful method to produce monodisperse nanoparticles. Herein, we explore unconventional phase transformations in the synthesis of organo-halide perovskite nanoparticles utilizing reverse micelle templates. We employ diblock-copolymer reverse micelles to fabricate these nanoparticles, which confines ions within micellar nanoreactors, retarding reaction kinetics and facilitating perovskite cage manipulation. The confined micellar environment exerts pressure on both precursors and perovskite crystals formed inside, enabling stable phases not typically observed at room temperature in conventional synthesis. This provides access to perovskite structures that are otherwise challenging to produce. The hydrophobic shell of the micelle also enhances perovskite stability, particularly when combined with anionic exchange approaches or large aromatic cations. This synergy results in long-lasting stable optical properties despite environmental exposure. Reverse micelle templates offer a versatile platform for modulating perovskite structure and behavior across a broad spectrum of perovskite compositions, yielding unique phases with diverse emission characteristics. By manipulating the composition and properties of the reverse micelle template, it is possible to tune the characteristics of the resulting nanoparticles, opening up exciting opportunities for customizing optical properties to suit various applications.