Resonant nonlinear-optical interference processes in four-level Doppler-broadened media are studied. Specific features of amplification and optical switching of short-wavelength radiation in a strongly-absorbing resonant gas under coherent quantum control with two longer wavelength radiations, are investigated. The major outcomes are illustrated with virtual experiments aimed at inversionless short-wavelength amplification, which also address deficiencies in this regard in recent experiments. With numerical simulations related to the proposed experiment in optically-dense sodium dimer vapor, we show optimal condition for optical switching and the expected gain of the probe radiation, which is above the oscillation threshold.