This PhD thesis has the characteristic to span over a long time because while working on it, I was working as a research engineer at CTTC with highly demanding development duties. This has delayed the deposit more than I would have liked. On the other hand, this has given me the privilege of witnessing and studying how wireless technologies have been evolving over a decade from 4G to 5G and beyond.
When I started my PhD thesis, IEEE and 3GPP were defining the two main wireless technologies at the time, Wi-Fi and LTE, for covering two substantially complementary market targets. Wi-Fi was designed to operate mostly indoor, in unlicensed spectrum, and was aimed to be a simple and cheap technology. Its primary technology for coexistence was based on the assumption that the spectrum on which it was operating was for free, and so it was designed with interference avoidance through the famous CSMA/CA protocol. On the other hand, 3GPP was designing technologies for licensed spectrum, a costly kind of spectrum. As a result, LTE was designed to take the best advantage of it while providing the best QoE in mainly outdoor scenarios.
The PhD thesis starts in this context and evolves with these two technologies. In the first chapters, the thesis studies radio resource management solutions for standalone operation of Wi-Fi in unlicensed and LTE in licensed spectrum. We anticipated the now fundamental machine learning trend by working on machine learning-based radio resource management solutions to improve LTE and Wi-Fi operation in their respective spectrum. We pay particular attention to small cell deployments aimed at improving the spectrum efficiency in licensed spectrum, reproducing small range scenarios typical of Wi-Fi settings.
IEEE and 3GPP followed evolving the technologies over the years: Wi-Fi has grown into a much more complex and sophisticated technology, incorporating the key features of cellular technologies, like HARQ, OFDMA, MU-MIMO, MAC scheduling and spatial reuse. On the other hand, since Release 13, cellular networks have also been designed for unlicensed spectrum. As a result, the two last chapters of this thesis focus on coexistence scenarios, in which LTE needs to be designed to coexist with Wi-Fi fairly, and NR, the radio access for 5G, with Wi-Fi in 5 GHz and WiGig in 60 GHz. Unlike LTE, which was adapted to operate in unlicensed spectrum, NR-U is natively designed with this feature, including its capability to operate in unlicensed in a complete standalone fashion, a fundamental new milestone for cellular. In this context, our focus of analysis changes. We consider that these two technological families are no longer targeting complementarity but are now competing, and we claim that this will be the trend for the years to come.
To enable the research in these multi-RAT scenarios, another fundamental result of this PhD thesis, besides the scientific contributions, is the release of high fidelity models for LTE and NR and their coexistence with Wi-Fi and WiGig to the ns-3 open-source community. ns-3 is a popular open-source network simulator, with the characteristic to be multi-RAT and so naturally allows the evaluation of coexistence scenarios between different technologies. These models, for which I led the development, are by academic citations, the most used open-source simulation models for LTE and NR and havereceived fundings from industry (Ubiquisys, WFA, SpiderCloud, Interdigital, Facebook) and federal agencies (NIST, LLNL) over the years.
Aquesta tesi doctoral té la característica d’allargar-se durant un llarg període de temps ja que mentre treballava en ella, treballava com a enginyera investigadora a CTTC amb tasques de desenvolupament molt exigents. Això ha endarrerit el dipositar-la més del que m’hagués agradat. D’altra banda, això m’ha donat el privilegi de ser testimoni i estudiar com han evolucionat les tecnologies sense fils durant més d’una dècada des del 4G fins al 5G i més enllà. Quan vaig començar la tesi doctoral, IEEE i 3GPP estaven definint les dues tecnologies sense fils principals en aquell moment, Wi-Fi i LTE, que cobreixen dos objectius de mercat substancialment complementaris. Wi-Fi va ser dissenyat per funcionar principalment en interiors, en espectre sense llicència, i pretenia ser una tecnologia senzilla i barata. La seva tecnologia primària per a la convivència es basava en el supòsit que l’espectre en el que estava operant era de franc, i, per tant, es va dissenyar simplement evitant interferències a través del famós protocol CSMA/CA. D’altra banda, 3GPP estava dissenyant tecnologies per a espectres amb llicència, un tipus d’espectre costós. Com a resultat, LTE està dissenyat per treure’n el màxim profit alhora que proporciona el millor QoE en escenaris principalment a l’aire lliure. La tesi doctoral comença amb aquest context i evoluciona amb aquestes dues tecnologies. En els primers capítols, estudiem solucions de gestió de recursos de radio per a operacions en espectre de Wi-Fi sense llicència i LTE amb llicència. Hem anticipat l’actual tendència fonamental d’aprenentatge automàtic treballant solucions de gestió de recursos de radio basades en l’aprenentatge automàtic per millorar l’LTE i Wi-Fi en el seu espectre respectiu. Prestem especial atenció als desplegaments de cèl·lules petites destinades a millorar la eficiència d’espectre llicenciat, reproduint escenaris de petit abast típics de la configuració Wi-Fi. IEEE i 3GPP van seguir evolucionant les tecnologies al llarg dels anys: El Wi-Fi s’ha convertit en una tecnologia molt més complexa i sofisticada, incorporant les característiques clau de les tecnologies cel·lulars, com ara HARQ i la reutilització espacial. D’altra banda, des de la versió 13, també s’han dissenyat xarxes cel·lulars per a espectre sense llicència. Com a resultat, els dos darrers capítols d’aquesta tesi es centren en aquests escenaris de convivència, on s’ha de dissenyar LTE per conviure amb la Wi-Fi de manera justa, i NR, l’accés a la radio per a 5G amb Wi-Fi a 5 GHz i WiGig a 60 GHz. A diferència de LTE, que es va adaptar per funcionar en espectre sense llicència, NR-U està dissenyat de forma nativa amb aquesta característica, inclosa la seva capacitat per operar sense llicència de forma autònoma completa, una nova fita fonamental per al mòbil. En aquest context, el nostre focus d’anàlisi canvia. Considerem que aquestes dues famílies de tecnologia ja no estan orientades cap a la complementarietat, sinó que ara competeixen, i afirmem que aquesta serà el tendència per als propers anys. Per permetre la investigació en aquests escenaris multi-RAT, un altre resultat fonamental d’aquesta tesi doctoral, a més de les aportacions científiques, és l’alliberament de models d’alta fidelitat per a LTE i NR i la seva coexistència amb Wi-Fi a la comunitat de codi obert ns-3. ns-3 és un popular simulador de xarxa de codi obert, amb la característica de ser multi-RAT i, per tant, permet l’avaluació de manera natural d’escenaris de convivència entre diferents tecnologies. Aquests models, pels quals he liderat el desenvolupament, són per cites acadèmiques, els models de simulació de codi obert més utilitzats per a LTE i NR i que han rebut finançament de la indústria (Ubiquisys, WFA, SpiderCloud, Interdigital, Facebook) i agències federals (NIST, LLNL) al llarg dels anys.
Esta tesis doctoral tiene la característica de extenderse durante mucho tiempo porque mientras trabajaba en ella, trabajaba como ingeniera de investigación en CTTC con tareas de desarrollo muy exigentes. Esto ha retrasado el depósito más de lo que me hubiera gustado. Por otro lado,
gracias a ello, he tenido el privilegio de presenciar y estudiar como las tecnologías inalámbricas
han evolucionado durante una década, de 4G a 5G y más allá.
Cuando comencé mi tesis doctoral, IEEE y 3GPP estaban definiendo las dos principales
tecnologías inalámbricas en ese momento, Wi-Fi y LTE, cumpliendo dos objetivos de mercado
sustancialmente complementarios. Wi-Fi fue diseñado para funcionar principalmente en
interiores, en un espectro sin licencia, y estaba destinado a ser una tecnología simple y barata.
Su tecnología primaria para la convivencia se basaba en el supuesto en que el espectro en
el que estaba operando era gratis, y así fue diseñado simplemente evitando interferencias a
través del famoso protocolo CSMA/CA. Por otro lado, 3GPP estaba diseñando tecnologías
para espectro con licencia, un tipo de espectro costoso. Como resultado, LTE está diseñado
para aprovechar el espectro al máximo proporcionando al mismo tiempo el mejor QoE en
escenarios principalmente al aire libre.
La tesis doctoral parte de este contexto y evoluciona con estas dos tecnologías. En los
primeros capítulos, estudiamos las soluciones de gestión de recursos de radio para operación
en espectro Wi-Fi sin licencia y LTE con licencia. Anticipamos la tendencia ahora fundamental
de aprendizaje automático trabajando en soluciones de gestión de recursos de radio para
mejorar LTE y funcionamiento deWi-Fi en su respectivo espectro. Prestamos especial atención
a las implementaciones de células pequeñas destinadas a mejorar la eficiencia de espectro
licenciado, reproduciendo los típicos escenarios de rango pequeño de la configuración Wi-Fi.
IEEE y 3GPP siguieron evolucionando las tecnologías a lo largo de los años: Wi-Fi
se ha convertido en una tecnología mucho más compleja y sofisticada, incorporando las
características clave de las tecnologías celulares, como HARQ, OFDMA, MU-MIMO, MAC
scheduling y la reutilización espacial. Por otro lado, desde la Release 13, también se han
diseñado redes celulares para espectro sin licencia. Como resultado, los dos últimos capítulos
de esta tesis se centran en estos escenarios de convivencia, donde LTE debe diseñarse para
coexistir con Wi-Fi de manera justa, y NR, el acceso por radio para 5G con Wi-Fi en 5 GHz
y WiGig en 60 GHz. A diferencia de LTE, que se adaptó para operar en espectro sin licencia,
NR-U está diseñado de forma nativa con esta función, incluyendo su capacidad para operar
sin licencia de forma completamente independiente, un nuevo hito fundamental para los
celulares. En este contexto, cambia nuestro enfoque de análisis. Consideramos que estas dos
familias tecnológicas ya no tienen como objetivo la complementariedad, sino que ahora están
compitiendo, y afirmamos que esta será la tendencia para los próximos años.
Para permitir la investigación en estos escenarios de múltiples RAT, otro resultado fundamental
de esta tesis doctoral, además de los aportes científicos, es el lanzamiento de modelos de alta
fidelidad para LTE y NR y su coexistencia con Wi-Fi y WiGig a la comunidad de código
abierto de ns-3. ns-3 es un simulador popular de red de código abierto, con la característica
de ser multi-RAT y así, naturalmente, permite la evaluación de escenarios de convivencia
entre diferentes tecnologías. Estos modelos, para los cuales lideré el desarrollo, son por citas
académicas, los modelos de simulación de código abierto más utilizados para LTE y NR y
han recibido fondos de la industria (Ubiquisys, WFA, SpiderCloud, Interdigital, Facebook) y
agencias federales (NIST, LLNL) a lo largo de los años.