Four-wave-mixing (FWM) radiation is generated between the hyperfine structures of the 5D and 5P states in a thermally broadened rubidium atomic vapor using resonant atomic coherence. Background-free unidirectional signals having narrow spectral linewidths are isolated and experimentally studied in the frequency domain, and the effects of the driving beam parameters on the properties of the radiation are discussed. The radiation has several new properties compared to traditional FWM radiations generated between the 5P and 5S states. The high-resolution signals obtained in this method could make it favorable in spectroscopic procedures that rely on two-photon fluorescence.