The interferon (IFN)-inducing capacity of different isolates of vesicular stomatitis virus (VSV) of the Indiana (IN) and New Jersey (NJ) serotypes were measured to assess the extent of variability of this phenotype. Over 200 preparations of wild-type field isolates, laboratory strains, and plaque-derived subpopulations were examined. Marked heterogeneity was found in the ability of these viruses to induce IFN, covering a 10,000-fold range. A good fit to a normal distribution for the log of the IFN yields suggests a continuum of incremental changes in the viral genome may govern the IFN-inducing capacity of consensus populations derived from independently arising infections. A broad range in the magnitude of these changes, skewed towards inducers of high IFN yields, is consistent with a comparable series of ribonucleotide changes in the VSV genome, a sine qua non of a quasispecies population. Plaque- or vesicle-derived populations displayed standard deviations less than the mean IFN yields, though skewed to higher yielders, whereas populations from field and laboratory samples which differed widely in time and origin of isolation gave standard deviations greater than the means. The plaque isolation of IFN-inducing particles of VSV-IN, normally masked in populations by the predominance of non-IFN-inducing particles that suppress IFN induction, and the isolation of potent wild-type IFN-inducing VSV-IN from cows during an outbreak of vesicular stomatitis in a region that had yielded only virus expressing the non-IFN-inducing phenotype in prior and subsequent years, supports the view that genetic bottlenecks are operative in the natural transmission of this disease.