Alterations to the tumor microenvironment following localized irradiation may influence the effectiveness of subsequent immunotherapy. The objective of this study was to determine how IFN-γ influences the inflammatory response within this dynamic environment following radiotherapy. B16/OVA melanoma cells were implanted into C57BL/6 (wild-type (WT)) and IFN-γ-deficient (IFN-γ−/−) mice. Seven days after implantation, mice received 15 Gy of localized tumor irradiation and were assessed 7 days later. Irradiation up-regulated the expression of VCAM-1 on the vasculature of tumors grown in WT but not in IFN-γ−/− mice. Levels of the IFN-γ-inducible chemokines MIG and IFN-γ-inducible protein 10 were decreased in irradiated tumors from IFN-γ−/− mice compared with WT. In addition to inducing molecular cues necessary for T cell infiltration, surface MHC class I expression is also up-regulated in response to IFN-γ produced after irradiation. The role of IFN-γ signaling in tumor cells on class I expression was tested using B16/OVA cells engineered to overexpress a dominant negative mutant IFN-γ receptor (B16/OVA/DNM). Following implantation and treatment, expression of surface class I on tumor cells in vivo was increased in B16/OVA, but not in B16/OVA/DNM tumors, suggesting IFN-γ acts directly on tumor cells to induce class I up-regulation. These increases in MHC class I expression correlated with greater levels of activated STAT1. Thus, IFN-γ is instrumental in creating a tumor microenvironment conducive for T cell infiltration and tumor cell target recognition.