Recently, it was documented that α-haemolysin (HlyA) from Escherichia coli uses erythrocyte P2 receptors cause lysis. This finding was surprising as it appeared firmly established that HlyA-dependent pore formation per se is sufficient for full cell lysis. We discovered that HlyA induced a sequential process of shrinkage and swelling and that the final haemolysis is completely prevented by blockers of P2X receptors and pannexin channels. This finding has potential clinical relevance as it may offer specific pharmacological interference to ameliorate haemolysis inflicted by pore-forming bacterial toxins. In this context, it is essential to know whether this is specific to HlyA-induced cell damage or if other bacterial pore-forming toxins involve purinergic signals to orchestrate haemolysis. Here, we investigate if the haemolysis produced by α-toxin from Staphylococcus aureus involves P2 receptor activation. We observed that α-toxin-induced haemolysis is completely blocked by the unselective P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid. Moreover, several selective blockers of P2X(1) and P2X(7) ionotropic receptors abolished haemolysis in murine and equine erythrocytes. Inhibitors of pannexin channels partially reduced the α-toxin induced lysis. Thus, we conclude that α-toxin, similar to HlyA from E. coli produces cell damage by specific activation of a purinergic signalling cascade. These data indicate that pore-forming toxins in general require purinergic signalling to elicit their toxicity.