1999
DOI: 10.1109/89.784102
|View full text |Cite
|
Sign up to set email alerts
|

Interframe LSF quantization for noisy channels

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

1
24
0
2

Year Published

2001
2001
2012
2012

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 51 publications
(27 citation statements)
references
References 52 publications
1
24
0
2
Order By: Relevance
“…For both quan- tizers SVQ and TCVQ, the 16-th dimensional LSF vector is split into five parts of (3,3,3,3,4) dimensional subvectors. In order to make a fair comparison of the three quantizers, they should be compared with the same speech database for the reason that different databases can lead to radically different objective performance for the same quantization scheme [30]. The performance of SVQ and its ROM requirement are summarized in Table 8.…”
Section: Simulation Resultsmentioning
confidence: 99%
“…For both quan- tizers SVQ and TCVQ, the 16-th dimensional LSF vector is split into five parts of (3,3,3,3,4) dimensional subvectors. In order to make a fair comparison of the three quantizers, they should be compared with the same speech database for the reason that different databases can lead to radically different objective performance for the same quantization scheme [30]. The performance of SVQ and its ROM requirement are summarized in Table 8.…”
Section: Simulation Resultsmentioning
confidence: 99%
“…SVQ의 성능을 올리기 위한 방법 중에는 Switched SVQ (SSVQ) [5,6] , Multi-Stage VQ (MSVQ) [7] , Predictive SVQ (PSVQ) [8,9] 등이 있다. 그중 Differential Pulse Code Modulation (DPCM) 개념을 사용하는 PSVQ는 현재 frame과 이전 frame 간의 차이값을 양자화하는 방법이다.…”
unclassified
“…이 방법을 사용하면 LSF 데이터의 interframe 상관관계를 고려하기 때문에 SVQ보다 성능이 좋아지게 된다. 과거 frame과의 차이값을 양자화 할 때, 과거값에 대한 가중치는 autoregressive (AR) 계수 를 이용하는 것이 최적의 방법이라고 알려져 있다 [8] . 관측 가능한 과거 frame의 개수가 늘어날수록 현재 frame의 예측 성능이 점점 증가 하지만, 채널 에러에 더욱 민감할 뿐만 아니라 계산량 문제도 있다고 알 려져 있기 때문에 과거 하나의 frame 정보에 대한 상 관관계를 사용하는 것이 일반적이었다 [13] .…”
unclassified
“…The source-channel optimized MSVQ interleaving scheme was tested as follows: A group of eight images comprised of Pepper, Zelda, Airplane, Boat, Bridge, Face, Man, and Speedboat were used for training a five-stage MSVQ according to (5) and (7). Blocks of size 8 8 are rearranged into vectors.…”
Section: B Image Transmissionmentioning
confidence: 99%