Almost all bacterial ring cleavage dioxygenases contain iron as the catalytic metal center. We report here the first available sequence for a manganese-dependent 3,4-dihydroxyphenylacetate (3,4-DHPA) 2,3-dioxygenase and its further characterization. This manganese-dependent extradiol dioxygenase from Arthrobacter globiformis CM-2, unlike iron-dependent extradiol dioxygenases, is not inactivated by hydrogen peroxide. Also, ferrous ions, which activate iron extradiol dioxygenases, inhibit 3,4-DHPA 2,3-dioxygenase. The gene encoding 3,4-DHPA 2,3-dioxygenase, mndD, was identified from an A. globiformis CM-2 cosmid library. mndD was subcloned as a 2.0-kb SmaI fragment in pUC18, from which manganese-dependent extradiol dioxygenase activity was expressed at high levels in Escherichia coli. The mndD open reading frame was identified by comparison with the known N-terminal amino acid sequence of purified manganese-dependent 3,4-DHPA 2,3-dioxygenase. Fourteen of 18 amino acids conserved in members of the iron-dependent extradiol dioxygenase family are also conserved in the manganese-dependent 3,4-DHPA 2,3-dioxygenase (MndD). Thus, MndD belongs to the extradiol family of dioxygenases and may share a common ancestry with the iron-dependent extradiol dioxygenases.
We propose the revised consensus primary sequence (G,T,N,R)X(H,A)XXXXXXX(L,I,V,M,F)YXX(D,E,T,N,A)PX(G,P)X{2,3}E for this family. (Numbers in brackets indicate a gap of two or three residues at this point in the sequence.) The suggested common ancestry is also supported by sequence obtained from genes flanking mndD, which share significant sequence identity with xylJ and xylG from Pseudomonas putida.