Several previous studies reported differences when stereothresholds are assessed with local-contour stereograms vs. complex random-dot stereograms (RDSs). Dissimilar thresholds may be due to differences in the properties of the stereograms (e.g., spatial frequency content, contrast, inter-element separation, area) or to different underlying processing mechanisms. This study examined the transfer of perceptual learning of depth discrimination between local and global RDSs with similar properties, and vice versa. If global and local stereograms are processed by separate neural mechanisms, then the magnitude and rate of training for the two types of stimuli are likely to differ, and the transfer of training from one stimulus type to the other should be minimal. Based on previous results, we chose RDSs with element densities of 0.17% and 28.3% to serve as the local and global stereograms, respectively. Fourteen inexperienced subjects with normal binocular vision were randomly assigned to either a local- or global- RDS training group. Stereothresholds for both stimulus types were measured before and after 7700 training trials distributed over 10 sessions. Stereothresholds for the trained condition improve for approximately 3000 trials, by an average of 0.36 ± 0.08 for local and 0.29 ± 0.10 for global RDSs, and level off thereafter. Neither the rate nor the magnitude of improvement differ statistically between the local- and global-training groups. Further, no significant difference exists in the amount of improvement on the trained vs. the untrained targets for either training group. These results are consistent with the operation of a single mechanism to process both local and global stereograms.