The effect of symmetry on the resonance spectra of antiferromagnetically coupled oscillators has attracted new interest with the discovery of symmetry-breaking induced anti-crossings. Here, we experimentally characterise the resonance spectrum of a synthetic antiferromagnet Pt/CoFeB/Ru/CoFeB/Pt, where we are able to independently tune the effective magnetisation of the two coupled magnets. To model our results we apply the mathematical methods of group theory to the solutions of the Landau Lifshitz Gilbert equation. This general approach, usually applied to quantum mechanical systems, allows us to identify the main features of the resonance spectrum in terms of symmetry breaking and to make a direct comparison with crystal antiferromagnets.