Pneumococcal meningitis is a life-threatening disease characterized by an acute purulent infection affecting piamater, arachnoid and the subarachnoid space. The intense inflammatory host's response is potentially fatal and contributes to the neurological sequelae. Streptococcus pneumoniae colonizes the nasopharynx, followed by bacteremia, microbial invasion and blood-brain barrier traversal. S. pneumoniae is recognized by antigen-presenting cells through the binding of Toll-like receptors inducing the activation of factor nuclear kappa B or mitogen-activated protein kinase pathways and subsequent up-regulation of lymphocyte populations and expression of numerous proteins involved in inflammation and immune response. Many brain cells can produce cytokines, chemokines and others pro-inflammatory molecules in response to bacteria stimuli, as consequence, polymorphonuclear are attracted, activated and released in large amounts of superoxide anion and nitric oxide, leading to the peroxynitrite formation, generating oxidative stress. This cascade leads to lipid peroxidation, mitochondrial damage, blood-brain barrier breakdown contributing to cell injury during pneumococcal meningitis.