Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: Numerous studies have demonstrated a correlation between asthma and irritable bowel syndrome (IBS). The Chinese herbal compound Shaoyao Gancao Tang (SYGCT) has been found to have therapeutic effects on both asthma and IBS, but the underlying mechanisms are not yet fully understood. This study aims to explore the key components, key targets, and potential mechanisms of SYGCT in treating asthma with IBS by using network pharmacology, molecular docking techniques and molecular dynamics simulation. Methods: The major chemical components and potential target genes of SYGCT were screened by bioinformatics. The key targets of Asthma-IBS comorbidity were identified based on network modules. The intersection of the drug targets and disease targets was identified as the potential targets of SYGCT in treating asthma-IBS. Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed to identify the biological processes and signaling pathways involved in these potential targets. A protein–protein interaction network was constructed to identify hub targets, while a drug-compound-target topological network was built to screen key compounds. Molecular docking was used to verify the affinity between the hub targets and key compounds. Molecular dynamics analysis was utilized to assess the binding stability of these interactions. Results: Network pharmacology analysis revealed that the therapeutic effect of SYGCT on asthma-IBS involved multiple biological processes and signaling pathways. It may exert therapeutic effects primarily through signaling pathways such as IL-17, TNF, and Th17 cell differentiation. The possible targets of SYGCT in the treatment of asthma-IBS could be IL6, TNF, JUN, PTGS2, STAT3, IL1B, CASP3, NFKBIA, IL10, and PPARG. Molecular docking verification showed that the predicted targets had good binding affinity with the compounds, among which PTGS2, CASP3, and PPARG had higher binding energy. Molecular dynamics simulation revealed that PTGS2, CASP3, and PPARG proteins had good stability and high binding strength with the compounds 2-[(3R)-8,8-dimethyl-3,4-dihydro-2H-pyrano[6,5-f]chromen-3-yl]-5-methoxyphenol and shinpterocarpin. Conclusion: SYGCT plays a therapeutic role in asthma and IBS through multiple targets and pathways, providing a theoretical basis for explaining the mechanism and clinical application of SYGCT in treating different diseases with the same treatment in asthma and IBS.
Background: Numerous studies have demonstrated a correlation between asthma and irritable bowel syndrome (IBS). The Chinese herbal compound Shaoyao Gancao Tang (SYGCT) has been found to have therapeutic effects on both asthma and IBS, but the underlying mechanisms are not yet fully understood. This study aims to explore the key components, key targets, and potential mechanisms of SYGCT in treating asthma with IBS by using network pharmacology, molecular docking techniques and molecular dynamics simulation. Methods: The major chemical components and potential target genes of SYGCT were screened by bioinformatics. The key targets of Asthma-IBS comorbidity were identified based on network modules. The intersection of the drug targets and disease targets was identified as the potential targets of SYGCT in treating asthma-IBS. Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed to identify the biological processes and signaling pathways involved in these potential targets. A protein–protein interaction network was constructed to identify hub targets, while a drug-compound-target topological network was built to screen key compounds. Molecular docking was used to verify the affinity between the hub targets and key compounds. Molecular dynamics analysis was utilized to assess the binding stability of these interactions. Results: Network pharmacology analysis revealed that the therapeutic effect of SYGCT on asthma-IBS involved multiple biological processes and signaling pathways. It may exert therapeutic effects primarily through signaling pathways such as IL-17, TNF, and Th17 cell differentiation. The possible targets of SYGCT in the treatment of asthma-IBS could be IL6, TNF, JUN, PTGS2, STAT3, IL1B, CASP3, NFKBIA, IL10, and PPARG. Molecular docking verification showed that the predicted targets had good binding affinity with the compounds, among which PTGS2, CASP3, and PPARG had higher binding energy. Molecular dynamics simulation revealed that PTGS2, CASP3, and PPARG proteins had good stability and high binding strength with the compounds 2-[(3R)-8,8-dimethyl-3,4-dihydro-2H-pyrano[6,5-f]chromen-3-yl]-5-methoxyphenol and shinpterocarpin. Conclusion: SYGCT plays a therapeutic role in asthma and IBS through multiple targets and pathways, providing a theoretical basis for explaining the mechanism and clinical application of SYGCT in treating different diseases with the same treatment in asthma and IBS.
BackgroundViral infection is a common trigger of severe respiratory illnesses in early life and a risk factor for later asthma development. The mechanism leading to asthma could involve an aberrant airway immune response to viral infections, but this has rarely been studied in a human setting.ObjectivesTo investigate in situ virus‐specific differences in upper airway immune mediator levels during viral episodes of respiratory illnesses and the association with later asthma.MethodsWe included 493 episodes of acute respiratory illnesses in 277 children aged 0–3 years from the COPSAC2010 mother–child cohort. Levels of 18 different immune mediators were assessed in nasal epithelial lining fluid using high‐sensitivity MesoScale Discovery kits and compared between children with and without viral PCR‐identification in nasopharyngeal samples. Finally, we investigated whether the virus‐specific immune response was associated with asthma by age 6 years.ResultsViral detection were associated with upregulation of several Type 1 and regulatory immune mediators, including IFN‐ɣ, TNF‐α, CCL4, CXCL10 and IL‐10 and downregulation of Type 2 and Type 17 immune mediators, including CCL13, and CXCL8 (FDR <0.05). Children developing asthma had decreased levels of IL‐10 (FDR <0.05) during viral episodes compared to children not developing asthma.ConclusionWe described the airway immune mediator profile during viral respiratory illnesses in early life and showed that children developing asthma by age 6 years have a reduced regulatory (IL‐10) immune mediator level. This provides insight into the interplay between early‐life viral infections, airway immunity and asthma development.
Background: The role of genetics in non-steroidal anti-inflammatory drugs (NSAID) exacerbated respiratory disease (NERD) is unclear, with different candidates involved, such as HLA genes, genes related to leukotriene synthesis, and cytokine genes. This study aimed to determine possible associations between 22 polymorphisms in 13 cytokine genes. Methods: We included 195 patients (85 with NERD and 110 with respiratory disease who tolerate NSAIDs) and 156 controls (non-atopic individuals without a history of asthma, nasal polyposis (NP), or NSAID hypersensitivity). Genotyping was performed by sequence-specific primer polymerase chain reaction (PCR-SSP). Amplicons were analyzed by horizontal gel electrophoresis in 2% agarose. Results: Significant differences in allele and genotype frequency distributions were found in TNF (rs1800629), IL4 (rs2243248 and rs2243250), and IL10 (rs1800896, rs1800871, and rs1800872) genes in patients with NSAID hypersensitivity. In all cases, the minor allele and the heterozygous genotype were more prevalent in NERD. An association of TNF rs1800629 SNP with respiratory disease in NSAID-tolerant patients was also found. Conclusions: Retrospectively recorded, we found strong associations of NERD with polymorphisms in IL4, IL10, and TNF genes, suggesting that these genes could be involved in the inflammatory mechanisms underlying NERD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.