Background
Neonatal encephalopathy (NE) contributes substantially to child mortality and disability globally. We compared cytokine profiles in term Ugandan neonates with and without NE, with and without perinatal infection or inflammation and identified biomarkers predicting neonatal and early childhood outcomes.
Methods
In this exploratory biomarker study, serum IL-1α, IL-6, IL-8, IL-10, TNFα, and VEGF (<12 h) were compared between NE and non-NE infants with and without perinatal infection/inflammation. Neonatal (severity of NE, mortality) and early childhood (death or neurodevelopmental impairment to 2.5 years) outcomes were assessed. Predictors of outcomes were explored with multivariable linear and logistic regression and receiver-operating characteristic analyses.
Results
Cytokine assays on 159 NE and 157 non-NE infants were performed; data on early childhood outcomes were available for 150 and 129, respectively. NE infants had higher IL-10 (p < 0.001), higher IL-6 (p < 0.017), and lower VEGF (p < 0.001) levels. Moderate and severe NE was associated with higher IL-10 levels compared to non-NE infants (p < 0.001). Elevated IL-1α was associated with perinatal infection/inflammation (p = 0.013). Among NE infants, IL-10 predicted neonatal mortality (p = 0.01) and adverse early childhood outcome (adjusted OR 2.28, 95% CI 1.35–3.86, p = 0.002).
Conclusions
Our findings support a potential role for IL-10 as a biomarker for adverse outcomes after neonatal encephalopathy.
Impact
Neonatal encephalopathy is a common cause of child death and disability globally. Inflammatory cytokines are potential biomarkers of encephalopathy severity and outcome.
In this Ugandan health facility-based cohort, neonatal encephalopathy was associated with elevated serum IL-10 and IL-6, and reduced VEGF at birth.
Elevated serum IL-10 within 12 h after birth predicted severity of neonatal encephalopathy, neonatal mortality, and adverse early childhood developmental outcomes, independent of perinatal infection or inflammation, and provides evidence to the contribution of the inflammatory processes.
Our findings support a role for IL-10 as a biomarker for adverse outcomes after neonatal encephalopathy in a sub-Saharan African cohort.