Cancer is the leading cause of morbidity and mortality worldwide, particularly lung cancer. Heat shock proteins and their upstream heat shock factors are involved in the occurrence of cancer and have been widely researched. However, the role of heat shock factor 2 (HSF2) in lung cancer remains unclear. In the present study, expression levels of HSF2 in lung cancer tissues from 50 lung cancer patients were detected by reverse transcription quantitative polymerase chain reaction, and 76% (38/50) were upregulated compared with the matched normal tissues. This suggested possible involvement of HSF2 in lung cancer. To additionally investigate the role of HSF2 in lung cancer occurrence, a plasmid encoding HSF2 was constructed. HSF2 was over expressed in normal lung epithelial BEAS-2B cells and lung cancer A549 cells. The results showed that HSF2 overexpression promoted cell proliferation and cell migration in BEAS-2B and A549 cells. Additional experiments showed that the HSF2-induced cell proliferation and cell migration were dependent on induction of HSPs, particularly HSP27 and HSP90, as co-transfection of HSP27 small interfering RNA (siRNA) or HSP90 siRNA attenuated HSF2-induced cell growth and migration. In conclusion, the present study showed that HSF2 is aberrantly expressed in lung cancer, and it may be an upstream regulator of HSPs, which may strongly affect cell growth and cell migration. Additional studies are required to explain the detailed mechanism between lung cancer, HSF2, HSPs and other possible signaling pathways.