MRL/lpr mice develop a spontaneous autoimmune disease that closely resembles human systemic lupus erythematosus (SLE) with DNA autoantibodies, hypergammaglobulinemia, immune complex glomerulonephritis, and systemic vasculitis. Little is known about the role of IL-3 in SLE. In order to study this we analyzed the expression of IL-3 in murine lupus and determined whether blockade of IL-3 with a monoclonal antibody or injection of recombinant IL-3 affects lupus nephritis in MRL/lpr mice. During disease progression IL-3 levels were increased in the plasma and in the supernatant of cultured splenocytes from MRL/lpr mice. Administration of IL-3 aggravated the disease with significantly higher renal activity scores, more renal fibrosis, and more glomerular leukocyte infiltration and IgG deposition. Blockade of IL-3 significantly improved acute and chronic kidney damage, reduced the glomerular infiltration of leukocytes and the glomerular deposition of IgG, and decreased the development of renal fibrosis. Furthermore, DNA autoantibody production, proteinuria, and serum creatinine levels were significantly lower in the anti-IL-3 group. Thus, IL-3 plays an important role in the pathogenesis of SLE and the progression of lupus nephritis. Hence, blockade of IL-3 may represent a new strategy for treatment of lupus nephritis.