We have shown that deregulated expression of either c-Myb or E2F-1 blocks terminal differentiation of M1 myeloid leukemia cells at the blast stage, whereas deregulated c-Myc blocks differentiation at the intermediate stage. Each of these oncogenes potentiates M1 leukemia in vivo. The zinc-finger transcription factor Egr-1 abrogates the block in M1 terminal differentiation imparted by oncogenic c-Myc or E2F-1, suppressing their leukemia-promoting function in nude mice. In this study, we asked whether Egr-1 also abrogates the block in terminal differentiation and suppresses leukemia imparted by deregulated c-Myb. Interestingly, the ectopic expression of Egr-1 in M1 cells expressing deregulated c-Myb only partially abrogated the block in terminal differentiation and did not suppress the leukemic phenotype. Two important implications from these data are that the leukemia suppressor function of Egr-1 is not directly related to how early the transforming oncogene blocks the differentiation program and that the tumor suppressor function of Egr-1 is dependent on the specific oncogene. Egr-1 is dominant to c-Myc-and E2F-1-, but not to c-Myb-, driven leukemia. These findings extend the notion that the molecular nature of genetic lesions responsible for leukemia determines the effectiveness of any given tumor suppressor.