Objectives: Mesenchymal stem cells hold promise for renal disease treatment. Vascular endothelial growth factor may heal tubule-interstitial fibrosis in unilateral ureteral obstruction by inhibiting epithelial-mesenchymal transition. We investigated the protective effect of vascular endothelial growth factor in transfected mesenchymal stem cells in unilateral ureteral obstruction-induced renal injury in rats. Materials and Methods: Male Wistar Albino rats (32 rats; weight, 250-300 g) were divided into 4 equal groups: group 1, control; group 2, unilateral ureteral obstruction; group 3, unilateral ureteral obstruction and mesenchymal stem cells; and group 4, unilateral ureteral obstruction and vascular endothelial growth factor-transfected mesenchymal stem cells. Vascular endothelial growth factor-transfected mesenchymal stem cells were administered intravenously before onset of unilateral ureteral obstruction. On day 14, the rats were killed and kidneys were retrieved. Tubular necrosis, mono-nuclear cell infiltration, and interstitial fibrosis were evaluated in paraffin blocks. We evaluated green fluorescent proteinpositive and vascular endothelial growth factorpositive cells; anti-inflammatory (Prostaglandin E2 Receptor) and interleukin 1 receptor antagonist), proinflammatory/anti-inflammatory (interleukin 6), and proinflammatory (MPO) cytokine expression levels; and levels of nitric oxide; transforming growth factor β1, E-cadherin, and hydroxyproline. Results: Green fluorescent protein-positive cells were negative in the renal parenchyma in groups 1 and 2 and positive in groups 3 and 4. Vascular endothelial growth factor levels were significantly higher in group 4. Transforming growth factor β1, nitric oxide, and E-cadherin levels were significantly higher in the unilateral ureteral obstruction than control group; however, in the study groups, these values were not significantly different from the unilateral ureteral obstruction group. In stem celltransplanted tissue samples, EP3, interleukin 1 receptor antagonist, and interleukin 6 levels were elevated, but MPO expression levels were low. Although there were significant differences for tubular necrosis and fibrosis in group 2, there were significant reductions in tubular injury and fibrosis in groups 3 and 4. Conclusions: Systemic stem cells transplanted into the kidney protected against unilateral ureteral obstruction-induced renal epithelial-mesenchymal transition and renal fibrosis.