Regular monitoring of drinking water quality is crucial for achieving Sustainable Development Goal 6, but conventional methods are costly and challenging to implement in low-resource settings. Community-based monitoring, facilitated by sensor technology and information and communication tools, offers a more efficient and affordable approach, yet data reliability is uncertain. This study investigated whether minimally trained nonexpert rural women could reliably monitor drinking water quality, household water treatment and safe storage practices in low-resource settings using an integrated water quality testing kit. The kit combined a mobile app with sensors for detecting chemical (hardness, pH, alkalinity, chlorine, total dissolved solids, conductivity, dissolved oxygen, oxidation−reduction potential, turbidity) and biological (Escherichia coli) contamination. The AquaGenX P/A kit was used to measured E. coli. We examined the interrater reliability and agreement between data collected by 27 rural women and our research team in 1673 rural households in Tanzania and two Indian states. Results showed robust, moderate to high levels of agreement and interrater reliability between the nonexperts and experts, suggesting the method delivers valuable water quality data. Rural women's involvement also led to empowerment, accountability, and ownership through technology. Our results indicate community-based initiatives' potential to improve water quality management in resource-constrained contexts.