In the present study, we examined the distribution of 6 groups of intermediate filaments (IFs; cytokeratins, CKs, vimentin, synemin, desmin, glial fibrillary acidic protein and lamins) in oocytes and follicular walls of the Japanese quail (Coturnix japonica) during their development using immunohistochemical and ultrastructural techniques. A distinctly vimentin- and synemin-positive Balbiani body, which is a transient accumulation of organelles (mitochondria, Golgi complex and endoplasmic reticulum) that occurs in the oocytes of all vertebrates including birds, could be detected in the oocytes of primordial and early pre-vitellogenic follicles. In larger pre-vitellogenic follicles, the Balbiani body has dispersed and the positivity of the granulosa cells appeared to concentrate in the basal portion of their cytoplasm. Our ultrastructural data demonstrated that the matrix of the Bal-biani body consists of fine IFs, which may play a role in the formation and dispersion of the Balbiani body. Of the CKs studied (panCK, CK5, CK7, CK8, CK14, CK15, CK18 and CK19), only CK5 showed a slight positive staining in both the theca externa and the Balbiani bodies of pre-vitellogenic oocytes. In conclusion, our data, which describe the changes in avian IF protein expression during folliculogenesis, suggest that the functions of the IFs (vimentin and synemin) of oocytes and follicular walls are not primarily mechanical but may be involved in the transient tethering of mitochondria in the area of the Balbiani body and in the gain of endocrine competence during the differentiation of granulosa cells.