Cogeneration is widely recognized as one of the most efficient methods of electricity generation, with gas turbine-based systems playing a critical role in ensuring reliability, sustainability, and consistent power output. This paper presents an energy efficiency analysis of a 14 MW high-efficiency cogeneration unit, featuring a modernized gas turbine as its core component. Since gas turbines often operate under varying loads due to fluctuating demand, this study examines their performance at 100%, 75%, and 50% load levels. It is observed that the efficiency of the gas turbine declines as the load decreases, primarily due to losses resulting from deviations from the design flow conditions. A detailed energy balance, Sankey diagram, and a comparative analysis of performance metrics against the manufacturer’s guarantees are provided for each load scenario. The results indicate that net thermal efficiency decreases by 10.7% at 75% load and by 30.6% at 50% load compared to nominal performance at full load. The performance at full load closely aligns with the values guaranteed by the gas turbine supplier. The gross electrical power output is 1.33% higher than the guaranteed value, and the thermodynamic circuit’s efficiency is 0.49% higher under real conditions. This study represents the initial phase of transitioning the turbine to operate on a fuel blend of natural gas and up to 20% hydrogen, with the goal of reducing CO2 emissions. As a novel contribution, this paper provides a systematized method for calculating and monitoring the in-service performance of gas turbines. The mathematical model is implemented using the Mathcad Prime 8.0 software, which proves to be beneficial for both operators and researchers.