The dynamic character of phospholipid aggregates limits conventional structural studies to the determination of average molecular features. In order to develop more detailed descriptions of phospholipid structure for comparison with experiment, the molecular dynamics of a hydrated lysophosphatidylethanolamine (LPE) micelle, incorporating 85 LPE and 1591 water molecules, have been simulated. Comparison of the initial and equilibrated micelles shows substantial differences both in LPE hydrocarbon chain conformation and polar head-group-solvent interactions. Although these changes produce only subtle effects on the averaged structural properties of the system, the alterations in hydrocarbon chain packing and head-group solvation appear to mimic a polymorphic pretransition from a spherical toward a cylindrical micelle structure.