The green filamentous bacterium Chloroflexus aurantiacus employs chlorosomes as photosynthetic antennae. Chlorosomes contain bacteriochlorophyll aggregates and are attached to the inner side of a plasma membrane via a protein baseplate. The structure of chlorosomes from C. aurantiacus was investigated by using a combination of cryo-electron microscopy and X-ray diffraction and compared with that of Chlorobi species. Cryo-electron tomography revealed thin chlorosomes for which a distinct crystalline baseplate lattice was visualized in high-resolution projections. The baseplate is present only on one side of the chlorosome, and the lattice dimensions suggest that a dimer of the CsmA protein is the building block. The bacteriochlorophyll aggregates inside the chlorosome are arranged in lamellae, but the spacing is much greater than that in Chlorobi species. A comparison of chlorosomes from different species suggested that the lamellar spacing is proportional to the chain length of the esterifying alcohols. C. aurantiacus chlorosomes accumulate larger quantities of carotenoids under high-light conditions, presumably to provide photoprotection. The wider lamellae allow accommodation of the additional carotenoids and lead to increased disorder within the lamellae.Chlorosomes (5, 13) are light-harvesting complexes found in three different phyla of photosynthetic bacteria. Chloroflexus aurantiacus belongs to the filamentous anoxygenic phototrophs (green nonsulfur bacteria) comprising members of the phylum Chloroflexi. All members of the green sulfur bacteria (phylum Chlorobi) contain chlorosomes. Very recently, a phototropic chlorosome-containing organism was found in the phylum Acidobacteria (9).Chlorosomes are oblong bodies attached to the inner side of the cytoplasmic membrane. A unique property of chlorosomes is that their main pigment, bacteriochlorophyll (BChl) c, d, or e, is organized in the form of an aggregate. A similar selfassembled aggregate can form in the absence of proteins and exhibits spectral and excitonic properties similar to those of pigments in the native chlorosomes (for a review, see reference 3). The BChl aggregates were suggested to form lamellar structures in chlorosomes of green sulfur bacteria with lamellar spacing between 2 and 3 nm, depending on the main BChl (BChl c or e) and the prevailing esterifying alcohol (38, 39). In this model, the lamellar layers are maintained by nonspecific hydrophobic interactions of the interdigitated esterifying alcohols, while the in-layer arrangement is mediated through specific interactions between the stacked chlorin rings. In BChl c-containing chlorosomes of Chlorobaculum tepidum (formerly Chlorobium tepidum), the lamellar system (spacing, ϳ2 nm) often remains parallel for the whole length of the chlorosome (33,38). In Chlorobaculum tepidum the lamellae exhibit considerable curvature, which was initially attributed to undulation (38), but recent end-on micrographs revealed a variety of curved lamellar structures, such as lamellar tubules or multilayered ...