Gesture recognition has been applied in many fields as it is a natural human–computer communication method. However, recognition of dynamic gesture is still a challenging topic because of complex disturbance information and motion information. In this paper, we propose an effective dynamic gesture recognition method by fusing the prediction results of a two-dimensional (2D) motion representation convolution neural network (CNN) model and three-dimensional (3D) dense convolutional network (DenseNet) model. Firstly, to obtain a compact and discriminative gesture motion representation, the motion history image (MHI) and pseudo-coloring technique were employed to integrate the spatiotemporal motion sequences into a frame image, before being fed into a 2D CNN model for gesture classification. Next, the proposed 3D DenseNet model was used to extract spatiotemporal features directly from Red, Green, Blue (RGB) gesture videos. Finally, the prediction results of the proposed 2D and 3D deep models were blended together to boost recognition performance. The experimental results on two public datasets demonstrate the effectiveness of our proposed method.