High performance operation with Internal Transport Barrier (ITB) is effective to improve the core plasma confinement in the future fusion reactor. Numerous plasma experiments with ITB were confirmed in the reversed magnetic shear. It is considered that ITB formation could be controlled by external fueling. In this study, firstly, the feasibility of pellet injection condition is simulated in tokamak reactor. Secondly, the effect of the pellet injection on the core plasma profile and ITB formation is analyzed at tokamak and helical reactors. Simulations are carried out using the toroidal transport linkage code TOTAL. In case of the operation with pellet injection from high magnetic-field side (HFS), the feasibility of pellet injection condition for ITB formation is demonstrated in the ITER-like tokamak reactor,TR-1. In both tokamak and helical reactors, it is shown that pellet injection depth is not related to the position of ITB formation, but it has significant effect to the radial profile. In helical case, wide-ranged ITB is formed when the pellet is injected centrally.