The major role played by pre-existing structures in the formation of vein-style mineral deposits is demonstrated with several examples. The control of a pre-existing decollement level on the formation of a crustal extension-related (collapse) gold deposit is first illustrated in the Quadrilátero Ferrífero from Brazil. Shear zone and decollement structures were also examined and shown to control veins formation by three distinct processes: (i) re-aperture and re-using of wrench shear zones in the case of Shila gold mines (south Peru); (ii) remobilisation of metal in volcanic-hosted massive sulphide (VHMS) deposit by subsequent tectonic events and formation of a secondary stockwork controlled by structures created during this event (Iberian Pyrite Belt, Spain); (iii) formation of economic stockwork by contrasting deformation behaviours between ductile black schist versus brittle more competent dolomite (Cu-Ifri deposit, Morocco). Two examples involve changing of rheological competence within zones affected by deformation and/or alteration in order to receive the mineralisation (case studies of Achmmach, Morocco, and Mina Soriana, Spain). The last case underscores the significance of the magmatic-hydrothermal transition in the formation of mesothermal gold deposits (Bruès mine, Spain). All these examples clearly demonstrate the crucial role played by previously formed structures and/or texture in the development and formation of ore deposits.Minerals 2019, 9, 56 2 of 22 improve mining exploration strategies. I will present and discuss seven case studies of metal-bearing veins with different modes of formation that highlight the role of pre-existing features on their development. This aspect seems to be frequently underestimated, at least in the case of vein deposits, and this work aims to demonstrate its significance in the development of exploration and exploitation programs. The re-using of some previously formed structures has, in that case, a significant but passive role with respect to the formation of the economic feature. This concept is already exemplified in another contribution of this volume [18]. Each of the seven cases presented herein include a brief overview of the regional geology and deformation history, followed by a detailed geometrical and textural analysis of ore-bearing veins and a regional-scale genetic model that integrates these data. The relationships between neo-formed structures versus pre-existing ones will be highlighted in each case as well as its implications for regional vein distribution and, consequently, exploration programs.