The miniaturization and affordable production of integrated microelectronics have improved in recent years, making unmanned aerial systems (UAS) accessible to consumers and igniting their interest. Researchers have proposed UAS-based solutions for almost any conceivable problem, but the greatest impact will likely be in applications that exploit the unique advantages of the technology: work in dangerous or difficult-to-access areas, high spatial resolution and/or frequent measurements of environmental phenomena, and deployment of novel sensing technology over small to moderate spatial scales. Examples of such applications may be the identification of wetland areas and use of high-resolution spatial data for hydrological modeling. However, because of the large—and growing—assortment of aircraft and sensors available on the market, an evolving regulatory environment, and limited practical guidance or examples of wetland mapping with UAS, it has been difficult to confidently devise or recommend UAS-based monitoring strategies for these applications. This paper provides a comprehensive review of UAS hardware, software, regulations, scientific applications, and data collection/post-processing procedures that are relevant for wetland monitoring and hydrological modeling.