Climate change has caused uncertainty in the hydrological pattern including weather change, precipitation fluctuations, and extreme temperature, thus triggering unforeseen natural tragedies such as hurricanes, flash flooding, heatwave and more. Because of these unanticipated events occurring all around the globe, the study of the influence of climate change on the alteration of flooding patterns has gained a lot of attention. This research study intends to provide an insight into how the future projected streamflow will affect the flooding-inundation extent by comparing the change in floodplain using both historical and future simulated scenarios. For the future projected data, the climate model Atmosphere/Ocean General Circulation Model (AOGCM) developed by Coupled Model Intercomparison Project Phase 6 (CMIP6) is used, which illustrates that the flood is increasing in considering climate models. Furthermore, a comparison of the existing flood inundation map by the Federal Emergency Management Agency (FEMA) study with the map generated by future projected streamflow data presents the entire inundation area in flood maps, implying the expansion area compared to FEMA needs to be considered in making emergency response plans. The effect of flooding in the inundation area from historical to future flow values, presented mathematically by a calculation of inundation extent percentage, infers that the considered watershed of Rock River is a flood-prone area. The goal is to provide insights on the importance of using the forecasted data for flood analysis and to offer the necessary background needed to strategize an emergency response plan for flood management.