Previous interoception research has demonstrated that sensory processing is reduced during cardiac systole, an effect associated with diminished cortical excitability, possibly due to heightened baroreceptor activity. This study aims to determine how phases of the cardiac cycle—systole and diastole—modulate neural sensorimotor activity during motor imagery (MI) and motor execution (ME). We hypothesised that MI performance, indexed by enhanced suppression of contralateral sensorimotor alpha (8–13 Hz) and beta (14–30 Hz) activity, would be modulated by the cardiac phases, with improved performance during diastole due to enhanced sensory processing of movement cues. Additionally, we investigated whether movement cues during systole or diastole enhance muscle activity. To test these hypotheses, 29 participants were instructed to perform or imagine thumb abductions, while we recorded their electroencephalography, electrocardiogram, and electromyogram (EMG) activity. We show that imaginary movements instructed during diastole lead to more pronounced suppression of alpha and beta activity in contralateral sensorimotor cortices, with no significant cardiac timing effects observed during ME as confirmed by circular statistics. Additionally, diastole was associated with significantly increased EMG on the side of actual and, to a lesser degree, imagined movements. Our study identifies optimal cardiac phases for MI performance, suggesting potential pathways to enhance MI-based assistive technologies.