Extensive genetic variations of low-molecular-weight glutenin subunits (LMW-GS) and their coding genes were found in the wild diploid A- and D-genome donors of common wheat. In this study, we reported the isolation and characterization of 8 novel LMW-GS genes from Ae.longissima Schweinf. & Muschl., a species of the section Sitopsis of the genus Aegilops, which is closely related to the B genome of common wheat. Based on the N-terminal domain sequences, the 8 genes were divided into 3 groups. A consensus alignment of the extremely conserved domains with known gene groups and the subsequent cluster analysis showed that 2 out of the 3 groups of LMW-GS genes were closely related to those from the B genome, and the remaining was related to those from A and D genomes of wheat and Ae. tauschii. Using 3 sets of gene-group-specific primers, PCRs in diploid, tetraploid and hexaploid wheats and Ae. tauschii failed to obtain the expected products, indicating that the 3 groups of LMW-GS genes obtained in this study were new members of LMW-GS multi-gene families. These results suggested that the Sitopsis species of the genus Aegilops with novel gene variations could be used as valuable gene resources of LMW-GS. The 3 sets of group-specific primers could be utilized as molecular markers to investigate the introgression of novel alien LMW-GS genes from Ae. longissima into wheat.